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A B S T R A C T   

In recent years, Alzheimer’s disease (AD) diagnosis using neuroimaging and deep learning has drawn great 
research attention. However, due to the scarcity of training neuroimaging data, many deep learning models have 
suffered from severe overfitting. In this study, we propose an ensemble learning framework that combines deep 
learning and machine learning. The deep learning model was based on a 3D-ResNet to exploit 3D structural 
features of neuroimaging data. Meanwhile, Extreme Gradient Boosting (XGBoost) machine learning was applied 
on a voxel-wise basis to draw the most significant voxel groups out of the image. The 3D-ResNet and XGBoost 
predictions were combined with patient demographics and cognitive test scores (Mini-Mental State Examination 
(MMSE) and Clinical Dementia Rating (CDR)) to give a final diagnosis prediction. Our proposed method was 
trained and validated on brain MRI brain images of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset. During the training phase, multiple data augmentation methods were employed to tackle overfitting. 
Our test set contained only baseline scans, i.e., the first visit scans since we aimed to investigate the ability of our 
approach in detecting AD during the first visit of AD patients. Our 5-fold cross-validation implementation ach-
ieved an average AUC of 100% during training and 96% during testing. Using the same computer, our method 
was much faster in scoring a prediction, approximately 10 min, than feature extraction-based machine learning 
methods, which often take many hours to score a prediction. To make the prediction explainable, we visualized 
the brain MRI image regions that primarily affected the 3D-ResNet model’s prediction via heatmap. Lastly, we 
observed that proper generation of test sets was critical to avoiding the data leakage issue and ensuring the 
validity of results.   

1. Introduction 

More than 55 million people were living with Alzheimer’s disease 
(AD) in 2020 and this number was predicted to exceed 152 million by 
2050 (Report, 2018). AD is one of the most common neurodegenerative 
disorders that causes impairment in cognitive function which can affect 
not only the patients but also their family, friends, and the society. 
Pathological changes in the brain of people with AD, including abnormal 
cell death or synaptic dysfunction, start to develop at least 20 years 

before symptoms can be observed (Böhle et al., 2019). Although there is 
currently no cure for AD, accurate AD diagnosis is still needed to inform 
clinical decisions. Accurate AD diagnosis is also imperative to AD drugs 
development where subjects’ status must be evaluated before, during, 
and at the end of clinical trials for treatment effectiveness monitoring. 

Several research have been conducted to investigate biomarkers that 
can be assessed non-invasively for AD diagnosis (Nguyen et al., 2019). 
Among them, single or multiple neuroimaging modalities based on 
structural magnetic resonance imaging (MRI), functional MRI (fMRI), 
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and metabolic positron emission tomography (FDG-PET) have yielded 
the most promising results in research (Mosconi et al., 2007). While MRI 
provides the biomarkers related to progressive structural damage of the 
brain such as temporal lobe atrophy or cerebral atrophy caused by AD 
(Cuingnet et al., 2011), the blood flow observed in fMRI reflects func-
tional disruption of local regions that can lead to AD (Duc et al., 2020; 
Vemuri et al., 2012); and PET gives the information of cerebral meta-
bolic rates of glucose which associates to neuronal activity (Rodrigues 
and Silveira, 2014). Depending on the assumption regarding which re-
gions of the brain give complementary information, input handling can 
be divided into different categories such as voxel-based morphometry 
(Good et al., 2001, 2002; Wang et al., 2015), region of interest (ROI)--
based (hippocampal volume) (Colliot et al., 2008; Rusinek et al., 2004; 
Tapiola et al., 2008), slice-based (Aderghal et al., 2017; Gao et al., 2018; 
Luo et al., 2017) and patch-based methods (Cheng and Liu, 2017; Li and 
Liu, 2018; Suk et al., 2014). 

In recent years, with the advance in machine learning algorithms and 
the emergence of deep learning, there have been several works focusing 
on creating a predictive tool using neuroimaging to assist clinicians in 
AD diagnosis. In the track of machine learning, support vector machines 
(SVM) (Boser et al., 1996; Vapnik, 1995) has been the most frequently 
used method in this domain. Recently, a significant improvement of 
tree-based algorithms such as random forest (RF) (Breiman, 2001) or 
extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) 
allowed the processing of high-dimensional data efficiently and led to an 
increasing research interest in employing these algorithms. They can be 
applied for imagery or non-imagery data (Fulton et al., 2019). In 2014, 
Moradi et al. (2014) proposed using random forest classifier and bio-
markers extracted from MRI and cognitive measures for early detection 
of AD conversion in MCI patients. The work of (Gray et al., 2012; Moradi 
et al., 2014) showed that random forest can be applied for manifold 
learning of pairwise similarities derived from multiple models and it also 
introduces the concept of feature importance ranking of either 
region-based or voxel-based features which allows identifying brain 
regions corresponding to the pathology. Regarding deep learning ap-
proaches, many supervised and unsupervised models have been pro-
posed to learn the hidden representation of the image without domain 
knowledge to diagnose AD. Liu et al. (2018) presented a cascaded 
convolutional neuron network (CNN) model to first learn the multi-level 
features from two different modalities (MRI and PET) and then ensemble 
these features to produce the prediction for patients. In (Hosseini-Asl 
et al., 2016; Parisot et al., 2018), the authors also demonstrated that 
CNN could achieve good results in identifying AD. Despite the success of 
CNN approaches, they require the training of many parameters which 
easily results in overfitting and needs large training datasets. The works 
of (Suk et al., 2015; Suk et al., 2014) utilized unsupervised algorithms 
such as Deep Boltzmann Machine (DBM) and Autoencoders (AE) for 
transfer learning to generalize the model to unseen instances. Data 
transformation methods including flipping, cropping and rotation were 
also employed before the training phase to increase the diversity of the 
input dataset (Esmaeilzadeh et al., 2018; Farooq et al., 2017; Islam and 
Zhang, 2018). 

To solve the overfitting problem, in this study, we propose a 
framework combining deep learning and machine learning and 
employed data augmentation. Our best-performing model achieved an 
AUC of 96.2% in classifying AD patients vs. cognitively normal (CN) 
subjects with a much faster scoring time compared to machine learning 
methods relying on feature extraction. In addition, utilizing an occlusion 
method, we generated heatmap visualizations to explain where in the 
MRI images our model looked at to predict patients’ status. This is highly 
desirable for the application of artificial intelligence systems in 
medicine. 

The rest of this manuscript is organized as follows: Section 2 presents 
how we collect and preprocess the data along with the proposed 
methods and evaluation criteria. Results, including classification per-
formance and heatmaps, will be reported in Section 3. Finally, Sections 4 

and 5 are discussions, conclusions, and future work. 

2. Materials and methods 

2.1. Data acquisition 

The data used for developing the models in our work was retrieved 
from the ADNI dataset (https://ida.loni.usc.edu). ADNI is a large-scale 
study focusing on the early detection and progression monitoring of 
AD. The image data in ADNI has gone through careful quality control, 
ensuring the reliability for the development and verification of our 
classification models. We selected patients who have MRI scans data and 
achieved a pool of 924 T1-weighted images of 462 subjects. A subject 
may possess more than one MRI scan due to multiple visits. Multiple 
scans of the same subject i.e., intra-subject scans acquired at various 
timestamps, introduce insignificant discrepancy compared to inter- 
subject scans. A target of our research is to detect AD during the first 
visit of patient. Therefore, only the first visit scans, i.e., baseline scans 
were included in the testing set. However, for the training set, we 
included both baseline scans and follow-up scans. This was crucial since 
the well-known problem of training complicated deep learning models 
on a modest size dataset is severe overfitting. Including follow-up scans 
in the training set helped to increase the training set size, thus reducing 
overfitting. The summary of our dataset is in Table 1. 

The selected data was preprocessed using a standard processing 
pipeline. Firstly, the MRI images were processed with N3 bias field 
correction in Advanced Normalization Tools (ANTS) (Avants et al., 
2008) to eliminate intensity inhomogeneity artifacts. Next, the brain 
region was extracted using the FSL BET tool (Jenkinson et al., 2005; 
Smith, 2002). Finally, the brain extracted image was registered into a 1 
mm MNI152 standard-space T1-weighted atlas. The results are 3D pro-
cessed images with the size of (182,218,182). 

2.2. Methods 

Our framework is a uni-data, multi-model approach, which means 
we explored features of MRI images by applying different machine 
learning methods. In the deep learning direction, a well-studied CNN 
ResNet was applied to exploit the local spatial characteristic of the im-
ages. In the second direction, XGBoost, a white-box machine learning 
algorithm was adopted to analyze the importance per voxel. At the final 
stage, prediction probabilities of both directions and demographics 
features and cognitive test scores were combined by XGBoost to produce 
the final prediction. Fig. 1 depicts an overview of our framework. 

2.2.1. 3D-ResNet 
CNNs have been widely used in computer vision and applications 

whose data contain implicit local relationships. In visual object classi-
fication, for example, CNNs perform impressively by analyzing the 
relationship of groups of neighbor pixels to detect edges, shapes, etc. The 
MRI images possess the same attribute but in 3D. In our work, we 
adopted Residual Networks (ResNet) developed by He et al. (2015) and 
modify its operation to be 3D-compatible. ResNet is built based on re-
sidual blocks in which an input can either pass through conventional 
convolution layers or skip several layers. This prevents the gradient 

Table 1 
Demographic details of all participants used in this study.  

Group Number of 
subjects 

Gender 
(M/F) 

Age 
(years) 

MMSE CDR 

AD 231 126/105 75.52 ±
7.71 

22.74 ±
3.00 

0.82 ±
0.36 

CN 231 123/108 75.25 ±
5.89 

29.06 ±
1.10 

0.01 ±
0.13 

MMSE: Mini-Mental State Examination; CDR: Clinical Dementia Rating. 
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vanishing problem and enables the use of deeper networks. ResNet also 
frees the user from architecture tuning since it can always shrink itself 
into a more simplified version by leveraging skip connections during 
training. In this study, we employed an 18-layer 3D ResNet. 

Data augmentation: Although ADNI is one of the most extensive 
medical image datasets, the amount of data has been still considered 
scarce for a deep learning approach which typically required thousands 
of samples to be effectively trained. A limited dataset often leads to 
overfitting problems, in which the model does not generalize on unseen 
test data, although it performs well on training data. To overcome this 
issue, in our work we applied multiple data augmentation methods to 
virtually expand the data capacity, namely non-baseline augmentation, 
random flip and rotation, and random cutout. All of them are recognized as 
semantic-intact methods, which means they do not distort or alter the 
semantic characteristic of the image data like other augmentation 
methods such as noise adding, translation, or color augmentation. We 
consider medical images as very sensitive data, and their characteristics 
should be preserved as much as possible. 

Non-baseline augmentation is a special augmentation method in 
which the original image data was not manipulated. Instead, we 
included intra-subject scans from the second visit onwards. 

Moreover, the image data were flipped and rotated with a random 
probability. The rotation angle was a multiplier of 90 degrees. Then, a 
randomly chosen cube patch (size r × r × r) was cut out from the image. 
Cutout method (Raj et al. 2022; Singh et al. 2021), an occlusion tech-
nique (Chlap et al. 2021), not only helps to enlarge the dataset size but 
also prevents AI models from only focusing exclusively on some key 
visual characteristics of the image. For example, a model may only look 
at the hippocampus region which has been proven to be a key factor in 
AD diagnosis but ignores other brain regions which may also have signs 
of disease. The cutout is similar to the drop-out method usually seen in 
deep neural networks but at the input image level instead of hidden 
layers. Cutout regularization drives the model to consider more of the 
image context into consideration when making decisions (Devries and 
Taylor, 2017). The flip-rotation and cutout probability as well as cutout 
patch size were chosen based on extensive parameter searching. 

2.2.2. Machine learning models 
Random Tree Embedding (RTE) (Geurts et al., 2006; Moosmann 

et al., 2006) is an unsupervised learning method that embeds the input 
vector non-linearly into lower binary feature space. Each tree of the 
forest splits at random without using a target variable and its leaves are 
finally binary encoded based on the category that its value belongs. 
Combining the encoded vector of all trees in the forest produces the new 
sparse feature space. 

XGBoost is a boosting ensemble learning method in which weak 
learners are built sequentially to reduce the gradient of the previous 
learners. Each weak learner in the model is a conventional decision tree. 
The tree consists of various nodes and at each node, it can be split into 
branches based on information gain and the last node where the branch 
stops splitting gives the output. XGBoost is an improved version of 
Gradient Boosting Machine which introduces a parallel and distributed 
way of tree learning and adds a regularization term in the loss function. 

Using these two methods, RTE and XGBoost, we built three classifiers 
with a voxel-as-features method: (i) XGB-HC: a 40 × 40 × 40 region of 
the hippocampus was cropped from the original image, then an XGBoost 
classifier was built on the flattened extracted region, (ii) XGB: a 
hippocampus-extended region of size 90 × 90 × 90 was cropped from 
the original image, then an XGBoost classifier was built on the flattened 
extracted region, (iii) RTE-XGB: a hippocampus-extended region of size 
90×90×90 was cropped from the original image, then an unsupervised 
random tree embedding was used to embed the flattened image into 
smaller space and finally, an XGBoost classifier was built on the 
embedded vector. 

2.2.3. Ensemble learning algorithm 
The ensemble technique that we adopted in this study is stacked 

ensemble learning which is also known as super learner. Stacking 
(Wolpert, 1992) allows for combining different learning algorithms at 
the base level. Intuitively, if the base models are diversified, the stacked 
ensemble will be able to learn from different angles, which results in 
heterogeneous characteristics. 

In our study, the predicted probabilities of how likely a person 
having AD were produced by three machine learning models: XGB-HC, 
XGB, and RTE-XGB. Then the ENS-1 model was created by ensembling 
the outputs of the three machine learning models using an XGBoost 
classifier. Similarly, the ENS-2 model was created by ensembling the 
outputs of the three machine learning models and the output of the 3D- 

Fig. 1. Overview of our classification framework. The MRI data were taken from ADNI data source and preprocessed by a combination of FSL and ANTs processing 
tools. The processed data flowed through a deep learning pipeline (top) and a XGBoost pipeline (bottom). Finally, the generated features of the two pipelines were 
concatenated with demographics features and cognitive scores to construct a combined features for the ensemble model (right). The ensemble model gave the final 
prediction (AD or CN). 
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ResNet model; the ENS-3 model: the outputs of the three machine 
learning models, the output of the 3D-ResNet model, and demographic 
information; and finally, the ENS-ALL model: the outputs of the three 
machine learning models, the output of the 3D-ResNet model, de-
mographic information, and cognitive scores. Table 2 shows the models 
investigated in this work. 

We trained the stacked ensemble model using 5-folds cross- 
validation. Therefore, for each fold, we combined the prediction of the 
first level models trained on the rest of the folds as the input to fit a meta 
learner and tested on the current fold. The detail of how we trained the 
stacked ensemble learning model with M base learners for fold 1 in 5- 
folds cross-validation is shown in Fig. 2. 

2.2.4. Performance evaluation 
We suggest that splitting the dataset into training and testing sets 

should be handled in a per-subject manner instead of a per-scan manner. 
In this way, we can ensure that all scans of a subject should be located 
exclusively to one set only and data leakage should not happen. Since 
the size of the dataset is modest, one well-known technique to evaluate 
the performance and stability of the model is N-fold cross-validation. In 
this study, we chose N = 5 and evaluate performance metrics for each 
fold. Area Under the Curve (AUC) was used as our performance metric 
since we find it the most stable metric. Other metrics such as accuracy 
tend to have high variance due to the small test set. To assess the sta-
bility of our model, we calculated the standard deviation of AUC across 
folds. 

All models were built by using PyTorch (for deep learning) (Paszke 

et al., 2019), Scikit-Learn (for machine learning) (Pedregosa et al., 2011) 
and XGBoost python package (Chen and Guestrin, 2016). 

3. Results 

3.1. Classification performance 

Table 3 summarizes performance of the deep learning models. 
Naively forward the MRI images through a 2D-ResNet gave a mediocre 
mean AUC of 0.631. 3D-ResNet boosted the AUC significantly to 0.877 
(approx. 39%) by effective 3D convolutional operations. We used the 
following data augmentation parameters: flip rotate probability = 0.3, cut 
out probability = 0.8, cut out size = 0.1. With those metrics, we observed 
a modest boost in performance from mean AUC 0.877 to mean AUC 
0.884. However, the performance gap between the training phase and 
the testing phase was tightened (mean AUC 0.917 in training - data not 
shown - vs. mean AUC 0.884 in testing, i.e., 0.033 gap) compared to one 
without data augmentation (mean AUC 0.938 in training - data not 
shown - vs. mean AUC 0.877 in testing, i.e., 0.061 gap) and the standard 
deviation of AUC among folds decreased from ± 0.057 to ± 0.039 as 
well. These results indicated signs of reduced overfitting and improved 
model stability. In conclusion, 3D-ResNet with data augmentation gave 
the best results in terms of performance and stability. 

Table 4 summarizes the results of all the models investigated in our 
work. The machine learning models XGB-HC, XGB, and RTE-XGB with 
mean AUCs of 0.861, 0.868, and 0.851, respectively, showed good 
discriminative capability compared to the deep learning model 3D- 
ResNet which achieved mean AUC of 0.884. Specifically, with only 
biomarkers from the hippocampus region, the XGB-HC model achieved 
mean AUC 0.861, which revealed that the hippocampus was a critical 
biomarker in predicting AD. Taking the hippocampus-extended region 
as input, the XGB model achieved a mean AUC of 0.868, i.e., only a 
0.007 increase compared to the XGB-HC model. The RTE-XGB model, in 
which the feature space of the hippocampus-extended region was 
reduced by a random tree embedding before being fed into the XGB 
classifier, achieved a mean AUC of 0.851, i.e., a 0.017 AUC drop 
compared to the XGB model. The ensemble of the three machine 
learning models XGB-HC, XGB, and RTE-XGB, creating ENS-1, resulted 
in a mean AUC of 0.883, which was comparable to the mean AUC of 
0.884 of the 3D-ResNet model. But the ENS-1 model had a lower stan-
dard deviation, ± 0.030 for the ENS-1 model vs. ± 0.039 for the 3D- 
ResNet, thus better stability. Ensembling the 3D-ResNet model and the 
three machine learning models, creating the ENS-2 model, improved the 
mean AUC to 0.899 ± 0.031. Adding demographic information (age and 
gender), creating the ENS-3 model, seemed to yield no effect since there 
was no significant difference between ENS-2 and ENS-3 models (mean 
AUC of 0.899 ± 0.031 vs mean AUC of 0.898 ± 0.029, respectively), 
suggesting that age and gender were not predictive information for AD 
status. Finally, adding scores from cognitive tests (MMSE and CDR), 
creating the ENS-ALL model, significantly improved the performance 
with a mean AUC of 0.962 ± 0.024. The ENS-ALL model was therefore 
the best-performing model. 

Fig. 3 illustrates ROC curves (reported for fold 1) and AUCs for the 
four base learners 3D-ResNet, XGB-HC, XGB, and RTE-XGB and the four 
ensemble models ENS-1, ENS-2, ENS-3, and ENS-ALL. Similar to the 
results shown in Table 4, Fig. 3 demonstrated that the performance of 
the four base learners 3D-ResNet, XGB-HC, XGB, and RTE-XGB were 
quite comparable. Assembling them and adding demographic informa-
tion and cognitive test scores, which created ensemble models ENS-1, 
ENS-2, ENS-3, or ENS-ALL, improved the performance. The ENS-ALL 
model, which was an ensemble of all four base learners, demographic 
information, and cognitive test scores, achieved the highest performance 
of 0.962 ± 0.024 AUC. 

Fig. 4 shows the correlation coefficients between some variables of 
concern in our study. As expected, the correlation between cognitive test 
scores, CDR and MMSE, and the predictions was strong (> 0.5). A 

Table 2 
List of abbreviations for models mentioned in this paper.  

Abbreviation Description Input Classification 
Method 

3D-ResNet 3D Residual Network 3D preprocessed 
image 

3D- ResNet 

XGB-HC XGBoostmodelon 
hippocampus regions 

Flattened 3D 
hippocampus region 
extracted from 3D 
preprocessed image 

XGBoost 

XGB XGBoostmodelon 
complete image 

Flattened 3D 
hippocampus 
extended region 
extracted from 3D 
preprocessed image 

XGBoost 

RTE-XGB XGBoost model with 
input dimension 
reduction 

Flattened 3D 
hippocampus 
extended region 
extracted from 3D 
preprocessed image 

RTE XGBoost 

ENS-1 Ensemble model of all 
XGBoost models 

Predicted 
probability of XGB- 
HC, 
XGB, RTE-XGB 

XGBoost 

ENS-2 ENS-1 + 3D-ResNet Predicted 
probability of XGB- 
HC, XGB, RTE-XGB, 
3D-ResNet 

XGBoost 

ENS-3 ENS-1 + 3D-ResNet 
+ demographics 
features 

Predicted 
probability of XGB- 
HC, XGB, RTE-XGB, 
3D-ResNet, 
demographic 
features (age and 
gender) 

XGBoost 

ENS-ALL ENS-1 + 3D-ResNet 
+ demographics 
features + cognitive 
scores 

Predicted 
probability of XGB- 
HC, XGB, RTE-XGB, 
3D-ResNet, 
demographic 
features (age and 
gender), cognitive 
test scores (MMSE 
and CDR) 

XGBoost  

D. Nguyen et al.                                                                                                                                                                                                                                 



IBRO Neuroscience Reports 13 (2022) 255–263

259

positive correlation between CDR scores and the models’ predictions 
indicated a proportional relationship between them. This result was 
reasonable since the higher the CDR score, the more likely a patient is to 
be diagnosed with AD. The negative correlation between MMSE and the 
models’ predictions indicated an inverse proportional relationship be-
tween them, which is expected since the higher the MMSE score, the less 
likely a patient is to be diagnosed with AD. Age had a moderate corre-
lation with the models’ predictions with correlation values from 0.18 to 
0.29. Meanwhile, there was a very low correlation between gender and 
the models’ predictions. 

The importance of individual components to the ensemble models 
ENS-2, ENS-3, and ENS-ALL are shown in Fig. 5. The results suggested 
that the base learners including 3D-ResNet, XGB-HC, XGB, and RTE-XGB 

provided equal contributions to the final predictions of the ensemble 
models ENS-2, ENS-3, and ENS-ALL. We could again observe that 
cognitive test scores CDR and MMSE played significant roles in the final 
predictions of the ensemble models. Meanwhile, age and gender just 
contributed minor information for the final prediction. 

3.2. Heatmap visualization 

Deep neural network-based approaches have often been considered 
as “black-boxes” since it is often difficult to understand how deep neural 
networks arrive at their predictions. These networks could perform very 
well but what drove their predictions was, in many cases, not obvious. 
Therefore, the predictions were often not explainable. In medical diag-
nosis, the explainability of AI’s predictions is critical to gaining doctors’ 
and patients’ confidence in AI. In this work, we used an occlusion matrix 
method as the heatmap visualization tool to help highlight the decisive 
brain regions and make the prediction more transparent. To achieve 
that, a mask of size m × m × m was slid over the 3D input images. At 
each sliding position, a corresponding masked input image was passed 
through the convolution network, and we recorded the level of predic-
tion probability changes compared to unmasked input. Finally, a heat-
map of prediction probability deviation was constructed. This 
visualization method is similar to (Zeiler and Fergus, 2014). The ratio-
nale is that the more crucial a brain region is, the more deviated the 
prediction outcome when that brain region is masked. Fig. 6 depicts 

Fig. 2. Stacked ensemble learning with N-fold cross validation.  

Table 3 
Performance summary (AUC) of the deep learning models.   

2D-ResNet 3D-ResNet Augmented 3D-ResNet 

Fold 1 0.616 0.866 0.870 
Fold 2 0.583 0.907 0.887 
Fold 3 0.713 0.952 0.948 
Fold 4 0.552 0.799 0.845 
Fold 5 0.690 0.863 0.872 
Mean 0.631 0.877 0.884 
Std ±0.069 ±0.057 ±0.039  

Table 4 
Performance summary (AUC) of the proposed models. The ENS-ALL model achieved the highest mean AUC of 0.962.   

3D-ResNet XGB-HC XGB RTE-XGB ENS-1 ENS-2 ENS-3 ENS-ALL 

Fold 1 0.870 0.857 0.867 0.850 0.866 0.878 0.878 0.951 
Fold 2 0.887 0.866 0.865 0.819 0.891 0.898 0.903 0.981 
Fold 3 0.948 0.927 0.916 0.923 0.931 0.953 0.947 0.985 
Fold 4 0.845 0.837 0.840 0.818 0.870 0.889 0.888 0.970 
Fold 5 0.872 0.816 0.851 0.844 0.858 0.880 0.876 0.926 
Mean 0.884 0.861 0.868 0.851 0.883 0.899 0.898 0.962 
Std ±0.039 ±0.042 ±0.029 ±0.043 ±0.030 ±0.031 ±0.029 ±0.024  

Fig. 3. Classification performance obtained by four base models and four ensemble models. (A) ROC curves (reported for fold 1). (B) mean AUCs and standard 
deviations of the models. 
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heatmap visualization of an AD subject on the left and a CN subject on 
the right. The heated area (red color) indicates the brain regions which 
contributed the most to the final prediction. We observed that, for AD 
patients, the 3D-ResNet model mostly looked at the hippocampus area 
whereas, for CN subjects, it looked at a broader space without solely 
relying on any specific region. 

4. Discussion 

Various methods to identify AD/MCI using either uni-modal or 
multi-modal neuro-imaging data and artificial intelligence have been 
proposed. These methods used either state-of-the-art machine learning- 
based frameworks (Zhang et al., 2011; Kim et al., 2018; Hidalgo-Muñoz 
et al., 2014; Khazaee et al., 2015; Nguyen et al., 2019) or deep 
learning-based frameworks (Duc et al., 2020; Etminani et al., 2022; Zhu 
et al., 2021) to achieve classification accuracies from about 75% to 
about 95% on the binary classifications. For example, one of the pioneer 

studies in AD/MCI identification using machine learning framework was 
proposed by Zhang et al. (2011). The authors introduced multi-kernel 
SVM classifiers to combine with the biomarkers of three modalities 
including structural MRI, FDG-PET, and CSF to achieve up to 93.2% 
accuracy when classifying AD from CN subjects. On the other hand, 
Etminani et al. (2022) introduced a validated 3D deep learning archi-
tecture that predicts the final clinical diagnosis of AD, MCI, and cogni-
tively normal (CN) using fluorine 18-FDG PET and compare the model’s 
performance to that of multiple expert nuclear medicine physicians’ 
readers. The authors have reported that the proposed model was able to 
obtain an AUC of 96.4% in AD, 71.4% in MCI-AD, and 94.7% in CN in 
the unseen test dataset, outperforming the physicians’ performance. 

The advantage of deep learning-based frameworks is that the 
extraction of features is not necessary. However, it comes with the cost 
of high computational expense and sometimes it requires large mem-
ories for data and model loading. Another drawback of deep learning 
frameworks is that it is often not obvious how the models arrived at 
predictions or what image regions or parameters they considered. This is 
often known as the “black-box” issue. On the other hand, machine 
learning models can provide explanations or interpretations to physi-
cians. However, intermediate feature engineering steps that include 
feature extraction and feature selection are needed for machine learning 
models to work. The feature extraction task is quite time-consuming and 
requires domain knowledge. 

In our opinion, an ideal AI model for deployment in clinical practice 
needs to satisfy the three following criteria. First, the AI model needs to 
have high classification performance. Second, the AI model needs to be 
able to score a prediction quickly enough while using a reasonable 
computational cost. And finally, the AI model needs to be explainable, e. 
g., parameters or image regions that the model considered to score a 
prediction are displayed to the end-user. Explainability is important to 
solve the “black-box” issue and increase physicians’ trust in AI models. 

In this work, we proposed an ensemble learning method combining 
deep learning and machine learning. During the training phase, we 
employed multiple data augmentation methods to tackle the overfitting 
issue. Among the ensemble model, the ENS-3 model achieved nearly 
90% AUC without using any domain-knowledge or cognitive scores 
(Table 4). Further analysis of the importance of each input revealed that 
the importance of the base learners was high. The results suggested that 
our model could provide a reliable prediction of AD based solely on MRI 
images. Adding cognitive test scores, the ENS-ALL model achieved 

Fig. 4. Correlation coefficients between age, gender, MMSE score, CDR score 
and predictions of the base learners 3D-ResNet, XGB-HC, XGB, RTE-XGB (re-
ported for fold 1). 

Fig. 5. The importance of the base learners 3D-ResNet, XGB-HC, XGB, RTE-XGB, demographic information (age and gender), and cognitive test scores (CDR and 
MMSE) to final predictions of the ensemble models ENS-2, ENS-3, and ENS-ALL (reported for fold 1). 
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96.2% AUC. The results indicate that using the ensemble of multiple 
classifiers and data is promising for improving diagnostic accuracy. Our 
model, considered an end-to-end framework, has the advantage of fast 
prediction time since it could score a prediction within approximately 
10 min. Whereas, other machine learning approaches, which require the 
extraction of sophisticated brain features using toolkits such as Free-
Surfer, FSL, etc. before feeding to the machine learning models, usually 
take many hours to extract features from raw data before scoring a 
prediction given the same computer. Interestingly, the XGBoost pipeline 
and standalone voxel-wise features, without any locality relationship 
among them, achieved acceptable performance. Using an occlusion- 
based method, we created a heatmap to visualize the MRI image re-
gions that our 3D-ResNet model looked at when scoring a prediction. In 
summary, our model achieved relatively good performance with a fast 
scoring time, and the prediction result could be explained by heatmap 

visualization. 
Our study has several limitations. First, although our model is faster 

in scoring a prediction, our model’s AUC is lower than some of the state- 
of-the-art machine learning models relying on feature extraction. We 
believe that with the availability of more data in future, our approach’s 
AUC could be further improved, and the performance gap will be 
gradually reduced. Second, this study doesn’t include the detection of 
mild cognitive impairment (MCI), an earlier stage of AD of which the 
detection would allow earlier interventions and has drawn great 
research interest. We plan to include MCI detection in our future studies. 

5. Conclusion and future 

In this work, we proposed a uni-data, multi-model framework for AD 
detection. Using the proposed methodology, we have boosted the 

Fig. 6. Heatmap visualization of an AD subject (left column) and a CN subject (right column). The red color regions are the most important regions to the model’s 
prediction whereas the blue color regions are less important. 
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classification performance and reduced overfitting. Five-fold cross 
validation implementation achieved on average 100% AUC for training 
and 96.2% AUC for testing. In detail, an ensemble of machine learning 
models performed comparably to the 3D-ResNet deep learning model 
with the test set AUC of 88.3% and 88.4%, respectively. The combina-
tion of machine learning models and the 3D-ResNet deep learning model 
improved the test set AUC to near 90%. Adding demographic informa-
tion (age and gender) and especially cognitive test scores (MMSE and 
CDR) further improved the test set AUC to 96.2%. Our end-to-end 
framework has the advantage of fast scoring time, approximately 
10 min to score a prediction, compared to many hour scoring time of 
feature extraction-based approaches. In future, we plan to extend our 
model to detect both AD and MCI. We also plan to add brain images 
acquired from other imaging modalities such as fMRI and PET and other 
biomarkers to increase the diversity of the individual learners. Transfer 
learning may also be applied to further reduce overfitting caused by the 
limited training data. 
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